サイン、コサイン、いつ使うん?(笑)これだけわかれば、いつ使うか理解できます

11.7kviews {views}

三角比といえば、サイン、コサイン、タンジェントですね。直角三角形を目の前にして、高校生の時、「サインは、どの辺と、どの辺の比だったけ?」なんてやってましたね。

「サイン、コサイン、いつ使うん」って言ってる人もいましたが、本当にいつ使うのでしょうか?

一般の人が日常的に使う事は少ないかもしれませんが、知っていると自慢できるようなのもあります。

例えば、目の前にある建物から自分までの距離を測ります。歩幅などを使って近似しても良いでしょう。

それから、分度器、ストロー、糸、重りで作るような簡単な角度測定器で、地面から建物のてっぺんまでの角度を見積もります。

そうすると、タンジェント(tan)を使って、建物の高さが、求められます。つまり、「高さ=距離・tan(角度)」という感じで計算できます。

直接、測れないような高いものの高さを見積もるには、この方法を使うのがいいでしょう。一般的に、角度と距離の関係を定式化したのが三角比やそれに関連する定理(余弦定理や正弦定理など)なのです。

また、サインやコサインは、角度を増やしていっても、元に戻るという性質があります。つまり、繰り返すという性質です。

身の回りで言えば、波、音波、電波といったものでしょう。こういったものを、科学・工学的に解析するのにサインやコサインが使われます。

波だけではなく、振り子やバネの運動も、繰り返し運動なので、同様にサインとコサインが使われいます。

また、数学的にも便利な点が多数あります。特にサインとコサインは、微分・積分で互いに相補的な関係であることから、数学的な操作などで扱いやすいというのもあります。

さらに、サインやコサインのような波の形は、足し算も簡単なのです。つまり、その場その場の波の高さを足し合わせるだけです。これを重ね合わせの原理というのですが、これを利用することによって、あらゆる形の波をサインやコサインの足し算で近似することもできるのです。

他にも、光の現象や量子力学にも、三角関数は使われているのです。量子力学なんて関係ない、と思われるかもしれないですが、いわゆる、デジタルデバイスを作った、そもそもの理論に当たります。(みなさん、使っているでしょう)

もちろん、他にもいろいろと使われている三角比・三角関数です。ここまで読めば、「いつ」使われるかおわかりでしょう。

大人のための家庭教師

この記事が気に入ったら
いいね ! して下さい!!

Twitter で

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です